Introduction to MDRO's

Chris Olson, MBA, M(ASCP)MLT^{CM}, CIC, LTC-CIP, CPHQ Missy Travis, MSN, RN, CIC

Disclosures

- Work funded by CDC grant
- Conflicts of interest

Learning Objectives

- What is an MDRO
- Review antibiotics and bacterial resistance
- Identify sources of MDRO's
- Review bacterial resistance mechanisms
- Identify Current CDC MDRO threat levels
- COVID-19 impact on U.S. MDRO's

Setting the Table

https://www.youtube.com/watch?v=pIVk4NVIUh8

What is a MDRO

MDRO Definition:

- For epidemiologic purposes, MDROs are defined as microorganisms, predominantly bacteria, that are resistant to one or more classes of antimicrobial agents.
- Multi-Drug-Resistant-Organism

Common Examples

- Methicillin-Resistant Staphylococcus aureus (MRSA)
- Vancomycin-Resistant Enterococcus (VRE)
- Extended Spectrum Beta-Lactamases (ESBL)
- Carbapenem-Resistant Enterobacterales (CRE)

Antibiotics and Resistance

- Penicillin was discovered in 1928 by Alexander Fleming
 - First resistance identified in 1940 in Staphylococcus
- Penicillin became commercially available in 1943
- After the discovery of each new antibiotic, there is acknowledgement of resistance alongside the discovery
- Bacteria know how to fight back, and they do so very quickly and efficiently

Bacterial Resistance Timeline

Antibiotic Approved or Released	Year Released	Resistant Germ Identified	Year Identified	1
Penicillin	1941	Penicillin-resistant <i>Staphylococcus aureus</i> ^{20,21} Penicillin-resistant <i>Streptococcus pneumoniae</i> ^{9,10} Penicillinase-producing <i>Neisseria gonorrhoeae</i> ¹¹	1942 1967 1976	
Vancomycin	1958	Plasmid-mediated vancomycin-resistant Enterococcus faecium ^{12,13} Vancomycin-resistant Staphylococcus aureus ¹⁴	1988 2002	
Amphotericin B	1959	Amphotericin B-resistant Candida auris ¹⁵	2016	
Methicillin	1960	Methicillin-resistant Staphylococcus aureus ¹⁶	1960	
Extended-spectrum cephalosporins	1980 (Cefotaxime)	Extended-spectrum beta-lactamase- producing Escherichia coli ¹⁷	1983	
Azithromycin	1980	Azithromycin-resistant Neisseria gonorrhoeae ¹⁸	2011	
Imipenem	1985	Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae®	1996	
Ciprofloxacin	1987	Ciprofloxacin-resistant Neisseria gonorrhoeae ²⁰	2007	
Fluconazole	1990 (FDA approved)	Fluconazole-resistant Candida ²¹	1988	
Caspofungin	2001	Caspofungin-resistant Candida ²²	2004	
Daptomycin	2003	Daptomycin-resistant methicillin-resistant Staphylococcus aureus ²³	2004	
Ceftazidime-avibactam	2015	Ceftazidime-avibactam-resistant KPC-producing Klebsiella pneumoniae ²⁴	2015	

Beta lactamase enzymes identified

Where do MDRO's Come From? (page I) ANALAS ANALAS 00000 **Plants Reservoirs** Milk containing antibiotics Processing Food sources Soil Agricultural animals Calves Pialets Manure and plants * 199999999999999999999999999999999999 Livestock Companion animals Irrigation Waste-water * Vastewate • Water / Soil Slaughter houses * Lakes, • Plumbing – drains Milk. rivers Aqua-culture eggs Meat (biofilms) Processing consumption Drinking water Humans

Where do MDRO's Come From? (page 2)

Reservoirs

- Asymptomatic carriers – transmission or environmental contamination
- Selected during treatment: not just the infection, but entire microbiome
- Topical antibiotics & colistin resistance

How antibiotic-resistant bacteria take over

... antibiotic-sensitive bacteria are killed and antibiotic-resistant bacteria become dominant.

Gram Negative MDRO Distribution

Bacterial Resistance to Antimicrobials

- Resistance is not new or unexpected, it's a natural phenomenon associated with DNA replication/transcription errors
- Three fundamental mechanisms of antimicrobial resistance. All DNA based.
 - 1. Enzymatic degradation of antibacterial drugs
 - 2. Alteration of bacterial proteins that are antimicrobial targets
 - 3. Changes in membrane permeability to antibiotics

Plasmid Mediated Resistance

- Plasmids harbor genes coding for antibiotic resistance and virulence factors.
- This allow bacteria to survive a hostile environment, and resist treatment.
- Examples:
 - Pseudomonas aeruginosa can become more mucoid
 - K. pneumonia with a KPC enzyme can resist most antibiotics
- Most CRE's are resistant due to having a plasmid

CDC Concerning Threats

Concerning Threats

These germs are public health threats that require careful monitoring and prevention action:

ERYTHROMYCIN-RESISTANT GROUP A STREPTOCOCCUS

CLINDAMYCIN-RESISTANT GROUP B STREPTOCOCCUS

CDC Serious Threats

These germs are public health threats that require prompt and sustained action:

DRUG-RESISTANT CAMPYLOBACTER

ESBL-PRODUCING

VANCOMYCIN-RESISTANT

ENTEROCOCCI

DRUG-RESISTANT

DRUG-RESISTANT

SHIGELLA

MULTIDRUG-RESISTANT PSEUDOMONAS AERUGINOSA

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS

SALMONELLA SEROTYPE TYPHI

DRUG-RESISTANT STREPTOCOCCUS PNEUMONIAE

DRUG-RESISTANT

https://www.cdc.gov/drugresistance/pdf/c ovid19-impact-report-508.pdf

CDC Urgent Threats

https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf

COVID-19 U.S. Impact on Antimicrobial Resistance

ConcerningThreats Impact

 Prior to pandemic, both Erythromycin-resistant group A Streptococcus and Clindamycin-resistant group B Streptococcus were on the rise

BUT

Updated data for 2020, 2021, 2022, and data collection delayed due to the COVID-19 Pandemic

COVID-19 U.S. Impact on Antimicrobial Resistance

Serious Threats Impact

- Drug-resistant Campylobacter, 10% decrease in drug resistance
- Antifungal-resistant *Candida*, overall 12% increase, and 26% increase of Hospital-onset cases
- ESBL's, overall 10% increase in cases and 32% increase in Hospital -onset cases
- VRE, overall 16% increase, and 14% increase of Hospital-onset cases
- Pseudomonas aeruginosa counts stable, but saw a 32% increase in Hospital-onset cases
- Drug-resistant Salmonella, and Shigella had delayed data, but saw increase in drug resistant vs non drug resistant cases.
- MRSA cases counts stable, but saw a 13% increase in Hospitalonset cases
- Drug-resistant Streptococcus pneumoniae, data delayed
- Drug-resistant Tuberculosis (TB), saw a decrease in cases

COVID-19 U.S. Impact on Antimicrobial Resistance

Urgent Threat Impact:

- Carbapenem-resistant Acinetobacter, overall 35% increase, and 78% in Hospital-onset cases
- *C. auris*, 60% increase in cases to 754 cases in 2022. Newest report is now 3,270 cases, as 200% increase
- Clostridioides difficile, data delayed.
- Carbapenem-resistant Enterobacterales, overall stable, but
 35% increase in Hospital-onset cases
- Drug-resistant Neisseria gonorrhoeae, data unavailable due to pandemic

We have work to do!

Questions?

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Resources

- <u>CDC Antibiotic Resistance Threats in the U.S., 2019</u>
- <u>CDC COVID-19 U.S. Impact on Antimicrobial Resistance</u>, <u>Special Report 2022</u>
- <u>https://www.acpjournals.org/doi/10.7326/M22-3469</u>

