Insecticide Resistance Testing at a Mosquito Control Program

Claudia Riegel and Mohamed F. Sallam
City of New Orleans Mosquito & Termite Control Board
Types of resistance

1) Reduced penetration
2) Metabolic resistance (enzymes)
3) Change in target site
4) Behavioral resistance
What is metabolic resistance?

Metabolic resistance occurs when resistant mosquitoes develop enzymes that more rapidly detoxify pesticides, preventing the active ingredient from reaching its physiologic target.

What is target-site resistance?

Target-site resistance is observed when the target of the pesticide on the mosquito is altered by a mutation. For example, mutations of sodium channel receptors produce resistance to pyrethroids, and mutations of the neurotransmitter acetylcholinesterase produce resistance to organophosphates and pyrethroids.
Traditional Definition

“*Insecticide resistance*” describes the ability of strains of insects to survive “*normally*” lethal doses of insecticide, the ability having resulted from selection of tolerant individuals in populations exposed to the toxicant for several generations.

The time to act is before resistance reaches this level.
Resistance Definition

- Insecticide Resistance is a genetic change in response to selection by toxicants that may impair control in the field.
How resistance is developed

- single class of insecticide
- long-residual action
- slow-release formulation
- apply to all life states, all generations
- treat all habitat where pest occurs
Mosquito Abatement Districts

- Out of 64 parishes in LA, we are one of 23 parish-wide mosquito abatement programs in Louisiana.

- Districts are managed independently and make resource allocation decisions to manage nuisance and mosquito disease vectors within their parish jurisdictions.
Mosquito Abatement Districts

- Resource allocation and depth of program
 - spray truck, no surveillance
 - small programs with surveillance
 - medium sized public
 - Well funded (>7 million/yr) with significant capital assets
 - Multi-dimensional programs
 - Rodent control
 - General pest
 - Public works
Mission
Minimize the incidences of disease transmission, economic loss, and medical emergencies caused by pests (i.e. mosquitoes, rodents, termites).

Action
We achieve this mission by managing pest populations through a series of integrated approaches including surveillance, source reduction, biological control, sanitation, community education, and adult/larval abatement operations.
Why We Control Mosquitoes?

• Nuisance
 • Quality of life
 • What species are considered nuisance?
• Mosquitoes of medical importance
 • Major disease risks:
 West Nile Virus
 • A virus that usually infects birds and transmitted by mosquitoes
 • Occasionally infects humans and horses (dead end)
 • Now endemic and cases occur each year

Dengue, chikungunya, and Zika
 • A virus that infects human and transmitted by mosquito

Culex quinquefasciatus
Aedes aegypti
Aedes albopictus
Control Strategies

- **Chemical Program**
 - Relies mainly on use of chemicals
 - May have limited surveillance

- **Integrated Pest management Program**
 - Uses Integrated Mosquito Management of which there are 8-9 components
Integrated Pest Management (IPM) is an effective and environmentally sensitive approach to pest management that relies on a combination of common-sense practices.

- IPM programs use current, comprehensive information on the life cycles of pests and their interaction with the environment.

- This information, in combination with available pest control methods, is used to manage pest damage by the most economical means, and with the least possible hazard to people, property, and the environment.
Integrated Mosquito Management

Synergistic, ecosystem-based strategy that focuses on long-term suppression of pests or their damage through a combination of techniques, including biologic control, trapping, habitat manipulation, and chemical control.

Core includes:
1. Surveillance, mapping, and rational setting of action thresholds
2. Physical control through manipulation of mosquito habitat
3. Larval source reduction and adult mosquito control
4. Monitoring for insecticide efficacy and resistance
Integrated Pest Management

- Surveillance
- Source Reduction
- Biological Control Agents
- Larvicides
- Adulticides – “when not to spray”
- Public Education
 - Reduce conducive conditions
 - Eliminate containers holding water
 - Repellents, prevention
Survey vs. Surveillance

- **Survey** – one-time gathering of inspection data to assess a situation

- **Surveillance** – a continuing process to monitor changes in mosquito populations
 - Indicates when control measures are needed
 - Monitors effectiveness of these measures
 - Resistance
Surveillance

Traps for Adult Mosquitoes

• Identify the mosquitoes
Why Mosquito Surveillance and Monitoring?

• Estimate Presence/Absence of Mosquito Vectors
• Estimate Population Size
• Public Health Concerns/Needs
• Disease
• Control Application and Evaluation
Why need to save the mosquito records

• Monitor spatial and temporal mosquito population dynamics and their relationship with virus transmission and disease incidence
• Establish what are the habitats of mosquitoes and their spatial and temporal dynamics
• Study the relationships between weather, mosquito populations, and disease
• Establish if vector control measures are effective, etc.
Record Keeping

• Date of inspection, location & inspector
 – Pen & paper
 – Collection device (GPS, phone, laptop)

• Location description – address, intersection, grid, geographic features, GPS coordinates
 – Routine locations – numbered, named
 – Land use and land cover change
 – Demographic characteristics

• Importance –
 – Predict pattern of mosquito populations, must know the historical data
 – Target the temporal window of mosquito population peak
 – Designate resource allocation
Mapping = Data Management (GIS/RS)

Can be as low tech as maps on the wall.

Using GPS and GIS allows for data management and analysis as well as creates good records.
GIS: Capturing Data

- Environmental Data
- Land use – land cover
- Surveillance data
- Control Data
GIS: Data Modeling

- Habitat suitability maps for adult/larval mosquito may be related to land use-land cover, meteorological, socioeconomic variables.
GIS: Data Output
(Mapping and Prediction of Vector/Disease Distribution)

- 2015, Cx. q and Aedes surveillance data
- Model the area with increased risk of bites- increased transmission
- Most models rely on only on presence/absence of mosquitoes
- This model takes into account human pop density

Sallam, M.F., et al., 2017. IJERS
INTEGRATED PEST MANAGEMENT

- Larvicides
- Adulticides
ULV hand fogger and portable mist blowers

• Pyrethroids/pyrethrum

• ULV
• Droplet size 10-46 microns

• Portable mist blowers
• Large droplet size
Backyard Treatments

- **Backyard treatments**
 - Barrier/residual
 - Bifenthrin
 - λ-cyhalothrin
 - Non-residual
- **Equipment**
 - Backpack sprayers
 - Hand-held foggers
Misting systems
Over the counter, Consumer market
Spray NOLA Mosquito Populations

1st round

Resistant

Susceptible
Some survive with selected population

Resistant

Susceptible
Offspring of the survivor

Resistant

Susceptible
Spray Again

2nd round

Resistant
Susceptible
More survivors

Resistant

Susceptible
More resistance in mosquito population
...Resistant population!
How resistance is developed

• single class of insecticide
 – Watch out for cross-resistance
• long-residual action
• slow-release formulation
• apply to all life states, all generations
• treat all habitat where pest occurs
Types of Resistance

Cross-resistance
- Common detoxification pathway.
- Target-site insensitivity.

Multiple-resistance
- Extends to a variety of insecticides with differing modes of action and different detoxification pathways.
Cross-Resistance Relationships

- Carbamates
- Organophosphates
- Pyrethroids
- DDT
- IGRs
- Esterases
- KDR
- AchE
- Oxidases
40 zones
Percent Mortality of *Culex quinquefasciatus* in English turn, NOLA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>19.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>34.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>48.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>88.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>97.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CDC Guidelines
- >97% susceptible
- 90-96 developing resistance
- <90 resistant
Percent mortality of *Cx. quinquefasciatus* in response to naled

Spray zones (10/40): M1, S2, P2, C1, R1, N1, H2, G1, Q2, F2, R1
<table>
<thead>
<tr>
<th>Naled spray zones</th>
<th>% Mortality/min</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4 2009</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1 2013</td>
<td>43</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-1 2009</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-2 2013</td>
<td>86</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1 2009</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1 2013</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-2 2013</td>
<td>44</td>
<td>52</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-1 2009</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-1 2010</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2 2013</td>
<td>96</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1 2013</td>
<td>97</td>
<td>97</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-2 2010</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-2 2013</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-2 2013</td>
<td>64</td>
<td>89</td>
<td>94</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-1 2009</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-1 2010</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-1 2013</td>
<td>75</td>
<td>81</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-1 2013</td>
<td>22</td>
<td>51</td>
<td>63</td>
<td>63</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>naled trt zones</td>
<td>% Mortality/min</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>A-4 2009</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1 2013</td>
<td></td>
<td>43</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-1 2009</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-2 2013</td>
<td></td>
<td>86</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1 2009</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1 2013</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-2 2013</td>
<td></td>
<td>44</td>
<td>52</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-1 2009</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-1 2010</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2 2013</td>
<td></td>
<td>96</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1 2013</td>
<td></td>
<td>97</td>
<td>97</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-2 2010</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-2 2013</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-2 2013</td>
<td></td>
<td>64</td>
<td>89</td>
<td>94</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>R-1 2009</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-1 2010</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-1 2013</td>
<td></td>
<td>75</td>
<td>81</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>M-1 2013</td>
<td></td>
<td>22</td>
<td>51</td>
<td>63</td>
<td>63</td>
<td>84</td>
</tr>
</tbody>
</table>

- money
- manpower

- **Green**: Non Spray Zones
- **Yellow**: Naled Spray Zones
Percent mortality of *Cx. quinquefasciatus* in response to Duet during 2009

Spray zones (9/40): K2, J1, A1, R2, R1, E2, O2, K1, Q2

sumithrin and prallethrin
<table>
<thead>
<tr>
<th>Duet spray zones</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1 2009</td>
<td>26</td>
<td>50</td>
<td>70</td>
<td>80</td>
<td>98</td>
</tr>
<tr>
<td>E-2 2009</td>
<td>31</td>
<td>79</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>J-1 2009</td>
<td>30</td>
<td>71</td>
<td>93</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>O-2 2009</td>
<td>0</td>
<td>25</td>
<td>66</td>
<td>73</td>
<td>100</td>
</tr>
<tr>
<td>K-2 2009</td>
<td>96</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>R-1 2009</td>
<td>57</td>
<td>91</td>
<td>94</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>R-2 2009</td>
<td>45</td>
<td>74</td>
<td>90</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>K-1 2009</td>
<td>10</td>
<td>34</td>
<td>49</td>
<td>56</td>
<td>95</td>
</tr>
<tr>
<td>A-4 2009</td>
<td>29</td>
<td>51</td>
<td>70</td>
<td>79</td>
<td>91</td>
</tr>
<tr>
<td>Q-2 2009</td>
<td>0</td>
<td>36</td>
<td>52</td>
<td>70</td>
<td>86</td>
</tr>
</tbody>
</table>
Developed resistance in *Cx. quinquefasciatus* to resmethrin

![Graph showing percent mortality over time for two different strains of *Cx. quinquefasciatus* (J1 2009 and J1 2010) with time in minutes on the x-axis and percent mortality on the y-axis.](image-url)
Developed resistance in *Cx. Quinquefasciatus* to resmethrin

In 2010, a change was made to use malathion.
Lesson Learned

• Data mining
 – Keep consistent data records
• Multiple levels of resistance within a neighborhood
• Select consistent sampling sites
• Real-time evaluation of field mosquito populations correlated with pre- and post treatment season
Strategies for Preventing Resistance

- Reduce your dependence on insecticides.
- Use materials with differing modes of action for different life stages.
- Alternate classes of insecticides.
- Treat only when absolutely necessary.
- Monitor both your control efficacy and resistance development.
Strategies implemented in NOLA
Field Procedure

- Cages were placed in open and sequestered locations at multiple points in each zone
 - Three sites per zone were paired with spinners
- Pre-treatment mortality was recorded prior to placement
- Aerial treatment lasted for ~45 minutes (8:02 pm – 8:47 pm)
 - Application rate: 0.5 oz / acre (50% of the maximum labeled rate)
- Cages and spinners were left for 1 hour post-treatment
Mortality Results

Aedes aegypti

Zone A

Average mortality AAEG Open: 90.71%
Average mortality AAEG Sequestered: 90.18%

Zone B

Average mortality AAEG Open: 90.18%
Average mortality AAEG Sequestered: 81.66%

Field validate methodology
Mortality Results
Aedes albopictus

Zone A
Average mortality AALB Open: 99.62%
Average mortality AALB Sequestered: 91.97%

Zone B
Average mortality AALB Open: 73.57%
Average mortality AALB Sequestered: 66.36%
Area-wide Larviciding

• Similar to adulticide technology – wind-driven droplet deposition
• Larger droplet size (100 to 300 µm) light enough to stay aloft temporarily, but heavy enough to settle into containers
• Evaluated in suburban habits – NJ & FL
• Used in Miami, FL following local transmission Zika virus
• Variety of chemical and equipment combinations in use
• Expensive but effective – epidemic vs routine
• Purchased equipment, made modifications to optimize deposition and efficiency
Methods

- **March 2017** - field trials with a modified Buffalo Turbine (BT) and Curtis Dyna-Fog Ag-Mister LV8™ Agriculture Low Volume Sprayer (LV8)

- **VectoBac® WDG** (Valent Biosciences)

- **Open field trial** - Eastern New Orleans, single pass application from each machine, bioassay jars and kromekote cards were set in a grid of 5 rows at 50’ intervals from the application site (0-600’), 100’ (700-900’)

- **Neighborhood trial** - Holy Cross neighborhood of the Lower 9th Ward, 2 “runs” for each machine; a single pass and double pass treatment method, utilizing bioassay jars only at 50’ intervals in yards in open and sequestered locations
Methods

- **VectoBac® WDG mix rate** 1 lb per gallon of water, red dye added for droplet visualization.
- **Bioassay jars and kromekote cards** left in the field 30 minutes post-application to allow for deposition.
- At the Biological Control lab, 200ml of water and 15 – 1st instar laboratory-reared *Ae. aegypti* added to each bioassay jar.
- Larvae were monitored at 1 hour, 24 hours, and 48 hours for mortality.
- Kromekote cards were scanned utilizing ImageJ software (NIH), R statistical software and a macro script.
- Droplet size and density were measured.
Results – Open Field

• Wind speed ranged from 5.8-8.1 mph WNW
• **LV8** - peak average mortality (94.7-100%) 0-50ft, mortality observed up to 250ft, but almost no larval mortality past 300 ft
• **BT** - from 0-50 ft lower average mortality (41.3%), but higher 50-300ft (80-100%), almost no larval mortality was observed past 300ft
• Average droplet counts supported mortality observations
Trial 2 - Neighborhood

<table>
<thead>
<tr>
<th>Distance (in ft)</th>
<th>Average corrected mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Open</td>
<td>100.0</td>
</tr>
<tr>
<td>Front Sequestered</td>
<td>89.5</td>
</tr>
<tr>
<td>Back Open</td>
<td>82.3</td>
</tr>
<tr>
<td>Back Sequestered</td>
<td>65.5</td>
</tr>
</tbody>
</table>

Single pass application

Double pass application
Physical Control = Source Reduction

- Physical alteration of mosquito breeding sites to prevent mosquito from completing their life cycle
- NOT permanent control
Biological Control

Copepods Fish
Current project (2017-2018)
GIS: Data Output
(Mapping and Prediction of Vector/Disease Distribution)

- Can we:
 - model resistance?
 - Create risk maps?
GIS: Data Output
(Mapping and Prediction of Vector/Disease Distribution)

You bet!

You just need the data

- Can we:
 - model resistance?
 - Create risk maps?
Preparedness

• A response plan

• Robust surveillance program
 – Mosquito collections
 – Virus testing
 – Understanding of local mosquito resistance/tolerance to insecticides
 – Data management

• Infrastructure
 – Equipment (larviciding and adulticiding)
 – Supplies and insecticides (validated in the field)
 – Trained personnel
 – Contingency contracts

• Interagency cooperation

• Education
 – Government officials, medical professionals, port and airport officials, public
Thank you

NOMTCB employees
CDC
 Dr. McAllister
 A. Ruiz
 Technical support and financial support
LA Dept of Infectious Disease – EPI group
Valent BioSciences
AMVAC
Manatee County MAD
Dr. P. Koehler and Dr. R. Pereira (UFL)

Teamwork is the key to success.

criegel@nola.gov
(504)415-7068